On-line Adaptive Interval Type-2 Fuzzy Controller Design via Stable SPSA Learning Mechanism
نویسندگان
چکیده
This paper proposes an interval type-2 Takagi-Sugeno-Kang fuzzy neural system (IT2TFNS) to develop an on-line adaptive controller using stable simultaneous perturbation stochastic approximation (SPSA) algorithm. The proposed IT2TFNS realizes an interval type-2 TSK fuzzy logic system formed by the neural network structure. Differ from the most of interval type-2 fuzzy systems, the type-reduction of the proposed IT2TFNS is embedded in the network by using uncertainty bounds method such that the time-consuming Karnik-Mendel (KM) algorithm is replaced. The proposed stable SPSA algorithm provides the gradient free property and faster convergence. However, the stable SPSA algorithm inherently has the problem for on-line adaptive control. Hence, in order to achieve the on-line result, we utilize the sliding surface to develop a new on-line adaptive control scheme. In addition, the corresponding stable learning is derived by Lyapunov theorem which guarantees the convergence and stability of the closed-loop systems. Simulation and comparison results are shown to demonstrate the performance and effectiveness of our approach.
منابع مشابه
Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...
متن کاملA Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System
Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...
متن کاملIndirect Adaptive Interval Type-2 Fuzzy Pi Sliding Mode Control for a Class of Uncertain Nonlinear Systems
Controller design remains an elusive and challenging problem for uncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) in comparison with type-1 fuzzy logic systems claim to effectively handle system uncertainties especially in the presence of disturbances and noises, but lack a formal mechanism to guarantee performance. In contrast, adaptive sliding mode control (ASMC) pro...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملFuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions
This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...
متن کامل